Finding Maximum k-Cliques Faster Using Lazy Global Domination
نویسندگان
چکیده
A clique in a graph is a set of vertices, each of which is adjacent to every other vertex in this set. A k-clique relaxes this requirement, requiring vertices to be within a distance k of each other, rather than directly adjacent. In theory, a maximum clique algorithm can easily be adapted to solve the maximum k-clique problem, although large sparse k-clique graphs reduce to large dense clique graphs, which can be computationally challenging. We adapt a state of the art maximum clique algorithm to show that this reduction is in fact useful in practice, and introduce a lazy global domination rule which sometimes vastly reduces the search space. We include experimental results for a range of real-world and benchmark graphs, and a detailed look at random graphs. We also use thread-parallel search to solve some harder instances.
منابع مشابه
Finding hidden cliques in linear time
In the hidden clique problem, one needs to find the maximum clique in an n-vertex graph that has a clique of size k but is otherwise random. An algorithm of Alon, Krivelevich and Sudakov that is based on spectral techniques is known to solve this problem (with high probability over the random choice of input graph) when k ≥ c √ n for a sufficiently large constant c. In this manuscript we presen...
متن کاملExact combinatorial algorithms and experiments for finding maximum k-plexes
We propose new practical algorithms to find maximum-cardinality k-plexes in graphs. A k-plex denotes a vertex subset in a graph inducing a subgraph where every vertex has edges to all but at most k vertices in the k-plex. Cliques are 1plexes. In analogy to the special case of finding maximum-cardinality cliques, finding maximum-cardinality k-plexes is NP-hard. Complementing previous work, we de...
متن کاملAn application of the Turán theorem to domination in graphs
A function f : V (G) → {+1,−1} defined on the vertices of a graph G is a signed dominating function if for any vertex v the sum of function values over its closed neighborhood is at least 1. The signed domination number γs(G) of G is the minimum weight of a signed dominating function on G. By simply changing “{+1,−1}” in the above definition to “{+1, 0,−1}”, we can define the minus dominating f...
متن کاملAn application of Turán theorem to domination in graphs ∗
3 A function f : V (G) → {+1,−1} defined on the vertices of a graph G is a signed domi4 nating function if for any vertex v the sum of function values over its closed neighborhood 5 is at least one. The signed domination number γs(G) of G is the minimum weight of a 6 signed dominating function on G. By simply changing “{+1,−1}” in the above definition 7 to “{+1, 0,−1}”, we can define the minus ...
متن کاملRoman k-Tuple Domination in Graphs
For any integer $kgeq 1$ and any graph $G=(V,E)$ with minimum degree at least $k-1$, we define a function $f:Vrightarrow {0,1,2}$ as a Roman $k$-tuple dominating function on $G$ if for any vertex $v$ with $f(v)=0$ there exist at least $k$ and for any vertex $v$ with $f(v)neq 0$ at least $k-1$ vertices in its neighborhood with $f(w)=2$. The minimum weight of a Roman $k$-tuple dominatin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016